Quizon Thursday onlee 17,18 CSE525 Lec18 Reduction

Debajyoti Bera (M21)

SAT: Satisfiability CNF: Conjunctive normal form
$3 C N P$ SAT and GNFSA And SONFSAT CNFSAT(E: CNF) vifenals is a satisfying assign. $(a \vee b \vee c \vee \bar{d}) \Leftrightarrow((b \wedge \bar{c}) \vee \overline{(\bar{a} \Rightarrow d)} \vee(c \neq a \wedge b))$ $(. v \cdots v) \wedge(\cdots v-v \cdot v-v)(\ldots)$ clause literal: x, x

$$
\begin{aligned}
& \left(y_{1} \vee \overline{x_{1}} \vee \overline{x_{4}}\right) \wedge\left(\overline{y_{1}} \vee x_{1} \vee z_{1}\right) \wedge\left(\overline{y_{1}} \vee x_{1} \vee \overline{z_{1}}\right. \\
& \wedge\left(y_{2} \vee x_{4} \vee z_{3}\right) \wedge\left(y_{2} \vee x_{4} \vee \overline{z_{3}}\right) \wedge\left(\overline{y_{2}} \vee \overline{x_{4}} \vee z_{4}\right. \\
& \wedge\left(y_{3} \vee \overline{x_{3}} \vee \overline{y_{2}}\right) \wedge\left(\overline{y_{3}} \vee x_{3} \vee z_{5}\right) \wedge\left(\overline{y_{3}} \vee x_{3} \vee \overline{z_{2}}\right. \\
& \wedge\left(\overline{y_{4}} \vee y_{1} \vee x_{2}\right) \wedge\left(y_{4} \vee \overline{x_{2}} \vee z_{7}\right) \wedge\left(y_{4} \vee \overline{x_{2}} \vee \bar{z}\right. \\
& \wedge\left(y_{5} \vee x_{2} \vee z_{9}\right) \wedge\left(y_{5} \vee x_{2} \vee \overline{z_{9}}\right) \wedge\left(\overline{y_{5}} \vee \overline{x_{2}} \vee z_{1}\right. \\
& \wedge\left(y_{6} \vee x_{5} \vee z_{11}\right) \wedge\left(y_{6} \vee x_{5} \vee \overline{z_{11}}\right) \wedge\left(\overline{y_{6}} \vee \overline{x_{5}} \vee\right. \\
& \Delta\left(\overline{v_{0}} \vee v_{0} \vee v_{r}\right) \Delta\left(v_{n} \vee \overline{v_{0}} \vee z_{10}\right) \Delta\left(v_{n} \vee \overline{v_{0}} \vee \frac{?}{z}\right.
\end{aligned}
$$

n : * variable in an instance fammela
Assume that no clause contains T/F or literals that can be trivially simplified.
DNF: OR of AND

- $(x \vee y \vee(F))$
- ($x \vee \operatorname{not}(x) \vee y)$
- ($x \vee x \vee x$)

CNF : Pick atleast one literal from avery clave [these literal will beassigned True] s: no literal \& its comp.
for ehirity clavse $(a \vee b)$ in $F: \| a, b$ are litenals $F^{\prime}=F^{\prime} \wedge(a \vee b \vee z i)$ where z^{\prime} is a
(1) If F is satisfialle, then F^{\prime} is satiffiable.

Let $X_{1}=V_{1}, X_{2}, V_{2} \cdots, X_{n}=V_{n}$ is a oorisficible asegmment of F.
A sotisfying asignment of F^{\prime} is : $X_{1}=v_{1} \ldots X_{n}=v_{n}$,
\& $Z_{1}=F$ foll an now z_{i} 's.

Q: Construct poly-time many-one "reduction" from 2CNFSAT to 3CNFSAT.
(2) If F is not satisfiable, F^{\prime} is not satis fiable. for examph, $F=(a \vee b) \wedge(a \vee \bar{b}) \wedge(\bar{a} \vee b) \wedge\left(\frac{1}{a} \vee \bar{b}\right)$ F is not sattrsfinble (evoluats to F for ... ??? ...

$$
\text { Reduce }(F)=F^{\prime}=\left(a \vee b \cup z_{1}\right) \wedge\left(a \cup \bar{b} \cup z_{2}\right) \wedge\left(\bar{a} \vee 6 \cup z_{z}\right)
$$

Return a 3CNF formula F'
Lemma: F is satisfiable iff F^{\prime} is satisfiable.

$$
F^{\prime} \text { is satisfiable if } z_{i}=T \text { for all } z_{i} \text {. }
$$

(2) If F^{\prime} is satisfiable- them F is satis fionlle
Apply Reduce() on $(x \vee y)$ (1)

Apply Reduce () on $(x \vee y) \wedge(x \vee \operatorname{NOT}(y)) \wedge(\operatorname{NOT}(x) \vee \operatorname{NOT}(y)) \wedge(\operatorname{NOT}(x) \vee y)$
def Reduce (F): I(F has C clauses Reduction is polytime. for every clause $(a \vee b)$ in F.
$F^{\prime}=F^{\prime} \wedge\left(a \vee b \vee z_{i}\right) \wedge\left(a \vee b \vee \overline{z_{i}}\right)$ where z_{i} is anew variable return F^{\prime}
(1) \Rightarrow Suppose $M_{1}=V_{1} \ldots \quad x_{n}=V_{n}$ is a satisfiging assignment of F. Construct the following assignment to F :
$X_{1}=v_{1} \cdots X_{n=} v_{n}$, for att z_{i}, $z_{i}=$ True
Claim: This assignment satisfies F !
All $\left(a \vee b \vee z_{i}\right)$ clauses evaluate to true. $\left[\because z_{i}=\right.$ True $]$
$A l l\left(a \vee b \vee \bar{z}_{i}\right)$ clauses " \quad " " $[\because \vee b)$ was already $]$
(2) It F^{\prime} is satisfiable then F is satisfiable.
$\operatorname{Lut} X_{1}-V_{1} \cdots X_{n}>V_{n}, Z_{1}=w_{1} \cdots Z_{c}=W_{c}$ be a catiofrging assignment of F^{\prime}.
Contract this assignment: $X_{1}=V_{1} \cdots X_{n}=V_{n} \left\lvert\, \begin{aligned} & \text { Claim! This assignee } \\ & \left(a \cup b \cup z_{i}\right) \&\left(a \cup b v z_{i}\right)\end{aligned}\right.$
\therefore (avb) in F would be the \angle bots a \& 6 cant be fobs intheass

Is $\left(G_{k}\right) \rightarrow$ Yes if thereareyk vertices which Is $\left.G, M_{3}\right)$ = No do not have edges between them 3SAT <= Independent Set (Is)

Given ANY 3SAT instance F, reduce F to Independent-Set instance (G, k)

- Reduction takes polynomial time
- If F is satisfiable, then G has an independent-set of size k or more
- If F is not satisfiable, then G has no independent-set size of size k or more

3SAT (alternate view) : is it possible to pick one literal from every clause such that no literal and its negation is selected?

IS : is it possible to pick k vertices such that no vertex and its neighbor is selected?

SAT \equiv 3CNFSAT 3SAT <= Independent Set

Given ANY 3SAT instance F, reduce F to Independent-Set instance (G, k)
\Rightarrow Suppose F is satisfiable. To show that G has an Is of size m.
F is satisfiable $\Rightarrow F^{\prime}=$ set oflitenals chosen from each claire. Construct V^{\prime} as the conesfornding serf varices. $\left|V^{\prime}\right|=m$.
def Reduce (F): Complexity:
$\mathrm{G}=$ empty graph $\quad \#$ vertices $=3 \mathrm{~m}$
For every clause Ci: \# edges $\leqslant 9 \mathrm{~m}^{2}$
var $\mathrm{a}, \mathrm{b}, \mathrm{c}=$ literals in $\mathrm{C} _\mathrm{i}$ folly in $m_{1} n$
Add to G a triangle over a $\quad \mathrm{i}, \mathrm{b} \mathrm{i}, \mathrm{c} _$i
For every pair of nodes u and v in G :
If $u=x _i$ and $v=y _j$:
If $\mathrm{x}=\operatorname{not}(\mathrm{y})$:
Add edge between u and v

- Suppose G has an Is V^{\prime} with m vertices. Claim'. F is satisfiable.
Return G, $K=\#$ clauses in F

3SAT <= Independent Set

Given ANY 3SAT instance F, reduce F to Independent-Set instance (G, k)

If F is not satisfiable, then G has no independent-set size of size k or more: If the graph has an independent set S of size k , we know that it has one node from each "clause triangle." Set those terms to true. This is possible because no 2 are negations of each other.

If F is satisfiable, then G has an independent-set of size k or more: If the formula is satisfiable, there is at least one true literal in each clause. Let S be a set of one such true literal from each clause. $|\mathrm{S}|=\mathrm{k}$ and no two nodes in S are connected by an edge.

$$
\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(x_{2} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{4}\right)
$$

3SAT <= Independent Set

Given ANY 3SAT instance F, reduce F to Independent-Set instance (G, k) Try 1. Create nodes x1, xl', x2, x2', x3, x3', ... xn, xn'

Try 2: Join xl-xl', x2-x2', ...
Try 3: Ensure no more and no less that one literal present in every clause is picked by creating triangles between literals in a clause.
Try 4: Create separate triangles for each clause (otherwise, literals sharing a clause will not be double counted).

3SAT (alternate view) : is it possible to pick one literal from every clause such that no literal and its negation is selected?

$$
\text { Tut:- UDHSDHTP, } 3 \text { SATSLSAT }
$$

IS : is it possible to pick k vertices such that no vertex and its neighbor is selected?

DIRHAMPATH \leqslant UDIRHAMPATH
$($ undir. 6$) \rightarrow$ if G hooa
$\left(\right.$ digaph $\left.G G_{1}\right) \rightarrow$ ys if thee io a Hemp Path in G a.b from s to t
Lemme: G hoo a Hampath from s to t iff it has a Hanpocth from $a t_{b}$ def Reduce (digraph $G, s_{c} t$): Uourput (undir $\left.H, a, b\right)$

Conotrect H as a copy of G by nemoving directions

$$
a=\text { cofy of } s
$$

$b=$ crpy of t
\Rightarrow Sulppore $S \rightarrow V_{1} \rightarrow V_{2} \rightarrow \ldots \rightarrow V_{n-2} \rightarrow t$ is a Hampath in G. Then $\delta .-v_{1}-v_{2}-\ldots v_{n-2}-t$ " " "H.

$$
\Leftarrow G=\quad u_{1} \rightarrow u_{2} \leftarrow u_{3} \quad s=u_{1}, t=u_{3}
$$

Reduce $(G, s, t)=\begin{gathered}H: u_{1}-u_{2}-u_{3} \\ a=u_{1}\end{gathered}$

